Termination w.r.t. Q of the following Term Rewriting System could not be shown:

Q restricted rewrite system:
The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

Q is empty.


QTRS
  ↳ Non-Overlap Check

Q restricted rewrite system:
The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

Q is empty.

The TRS is non-overlapping. Hence, we can switch to innermost.

↳ QTRS
  ↳ Non-Overlap Check
QTRS
      ↳ DependencyPairsProof

Q restricted rewrite system:
The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))


Using Dependency Pairs [1,13] we result in the following initial DP problem:
Q DP problem:
The TRS P consists of the following rules:

LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(u, v)
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(w, z)
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)

The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))

We have to consider all minimal (P,Q,R)-chains.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
QDP
          ↳ DependencyGraphProof

Q DP problem:
The TRS P consists of the following rules:

LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(u, v)
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))
LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> CONCAT2(w, z)
CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)

The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))

We have to consider all minimal (P,Q,R)-chains.
The approximation of the Dependency Graph [13,14,18] contains 2 SCCs with 2 less nodes.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
QDP
                ↳ QDPOrderProof
              ↳ QDP

Q DP problem:
The TRS P consists of the following rules:

CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)

The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))

We have to consider all minimal (P,Q,R)-chains.
We use the reduction pair processor [13].


The following pairs can be strictly oriented and are deleted.


CONCAT2(cons2(u, v), y) -> CONCAT2(v, y)
The remaining pairs can at least by weakly be oriented.
none
Used ordering: Combined order from the following AFS and order.
CONCAT2(x1, x2)  =  CONCAT1(x1)
cons2(x1, x2)  =  cons1(x2)

Lexicographic Path Order [19].
Precedence:
[CONCAT1, cons1]


The following usable rules [14] were oriented: none



↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
                ↳ QDPOrderProof
QDP
                    ↳ PisEmptyProof
              ↳ QDP

Q DP problem:
P is empty.
The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))

We have to consider all minimal (P,Q,R)-chains.
The TRS P is empty. Hence, there is no (P,Q,R) chain.

↳ QTRS
  ↳ Non-Overlap Check
    ↳ QTRS
      ↳ DependencyPairsProof
        ↳ QDP
          ↳ DependencyGraphProof
            ↳ AND
              ↳ QDP
QDP

Q DP problem:
The TRS P consists of the following rules:

LESS_LEAVES2(cons2(u, v), cons2(w, z)) -> LESS_LEAVES2(concat2(u, v), concat2(w, z))

The TRS R consists of the following rules:

concat2(leaf, y) -> y
concat2(cons2(u, v), y) -> cons2(u, concat2(v, y))
less_leaves2(x, leaf) -> false
less_leaves2(leaf, cons2(w, z)) -> true
less_leaves2(cons2(u, v), cons2(w, z)) -> less_leaves2(concat2(u, v), concat2(w, z))

The set Q consists of the following terms:

concat2(leaf, x0)
concat2(cons2(x0, x1), x2)
less_leaves2(x, leaf)
less_leaves2(leaf, cons2(x0, x1))
less_leaves2(cons2(x0, x1), cons2(x2, x3))

We have to consider all minimal (P,Q,R)-chains.